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The urban street network is one of the most permanent features of
cities. Once laid down, the pattern of streets determines urban form
and the level of sprawl for decades to come. We present a high-
resolution time series of urban sprawl, as measured through street
network connectivity, in the United States from 1920 to 2012. Sprawl
started well before private car ownership was dominant and grew
steadily until the mid-1990s. Over the last two decades, however,
new streets have become significantly more connected and grid-like;
the peak in street-network sprawl in the United States occurred in
∼1994. By one measure of connectivity, the mean nodal degree of in-
tersections, sprawl fell by ∼9% between 1994 and 2012. We analyze
spatial variation in these changes and demonstrate the persistence of
sprawl. Places that were built with a low-connectivity street network
tend to stay that way, even as the network expands. We also find
suggestive evidence that local government policies impact sprawl,
as the largest increases in connectivity have occurred in places with
policies to promote gridded streets and similar New Urbanist design
principles. We provide for public use a county-level version of our
street-network sprawl dataset comprising a time series of nearly 100 y.
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The planet’s population is undergoing the last phase of be-
coming urbanized, a once-only process resulting from tech-

nological advance and the centralization of resources. However,
urban development over the last century has increasingly taken
the form of sprawl, characterized by low densities, spatially
segregated land uses, and a street network with low connectivity.
Although sprawl has been documented in Europe, Latin Amer-
ica, India, and China (1, 2), it is most often associated with
postwar urban development in the United States.
A large body of empirical evidence links sprawl with greater ve-

hicle travel, material use, energy consumption, and greenhouse gas
emissions (3, 4). Indeed, urban economists, historically sympathetic
to sprawl as a desirable market outcome, have begun to focus more
on its negative externalities and on the agglomeration benefits of
dense cities (5). (Other sprawl-related externalities such as a re-
duction in social capital may exist as well but are more contentious in
the literature. See, for example, ref. 6.) To the extent that conges-
tion, carbon, and other taxes on private vehicle travel are set in-
efficiently low, the private market will produce too much sprawl.
On the time scale of several decades, some characteristics of

the physical layout of urban areas can change in response to in-
frastructure, prices, and migration. For instance, buildings can be
reshaped or replaced, and new infrastructure and services can
arise. However, residential roads tend to remain where they were
first placed. London (1666) and San Francisco (1906) are just two
examples where cities have been rebuilt on an almost identical
street network following devastating fires or earthquakes (ref. 7,
p. 227). As the Intergovernmental Panel on Climate Change notes,
the long-lived nature of the built environment tends to lock in
energy consumption and emissions once urbanization occurs (4).
Moreover, because high-density living requires more frequent

access to services outside the home, low-connectivity road networks
limit the extent to which residential and commercial land uses can
change. As a result, areas with low-connectivity road networks will
have a limited ability to adapt even in the face of rising fuel or
carbon taxes. Meanwhile, there is wide variation in the degree to
which extant urban areas sprawl, and understanding the influences,

including possible future policies, on sprawl is key to evaluating and
mitigating the possible “lock-in” effect of low-connectivity roads.
In the United States, given the doubling of fuel prices between

the 1990s and mid-2014, policy efforts to promote smart growth and
New Urbanism, and an apparent shift in consumer preferences
toward urban living (8), one might expect an impact on new de-
velopment. To date, however, the evidence has been mixed.
Ramsey (9) reports that the share of infill housing construction
increased in 2005–09 compared with 2000–04, and news reports
announce the arrival of “peak sprawl” based on construction
trends (10). In contrast, others (11) find that sprawl continued to
increase, if only marginally, between 2000 and 2010. However,
these studies usually rely on a comparison of just two or three
time points, making it problematic to discern trends, and sprawl
research in general has focused on describing and explaining
cross-sectional differences in urban development in a single year.
Here, we provide a quantitative history of urban sprawl in the

United States, as measured through the connectivity of the street
network. We make three core contributions. First, we present, to
our knowledge, the first high-resolution time series of sprawl from
1920 to 2012 based on our reconstruction of historical road net-
works for a substantial subset of US counties. It provides detail for
small geographic areas and allows an unprecedented quantitative
account of changes in urban form over the century. Using a com-
plementary method that helps to validate our core results, we also
develop a time series that covers the entire country but with lower
time resolution and range. Second, we quantify the rise of sprawl in
the urbanized United States since the early 20th century. We date
the rise of sprawl to long before the private automobile became
dominant and find that sprawl appears to have peaked in the mid-
1990s. Importantly, because our measures are based on new urban
streets, this turnaround is unlikely to be due to infill development
on underused sites. Rather, today’s newly built neighborhoods

Significance

Urban development patterns in the 20th century have been in-
creasingly typified by urban sprawl, which exacerbates climate
change, energy and material consumption, and public health
challenges. We construct the first long-run, high-resolution time
series of street-network sprawl in the United States. We find that
even in the absence of a coordinated policy effort, new de-
velopments have already turned the corner toward less sprawl.
Initial impacts on vehicle travel and greenhouse gas emissions
will be modest given that the stock of streets changes slowly,
but feedbacks are likely to mean that benefits compound in fu-
ture years. Our publicly released data provide further opportu-
nities for research on urban development and the social and
environmental impacts of different urban forms.

Author contributions: C.B.-L. and A.M.-B. designed research, performed research, ana-
lyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The data reported in this paper have been deposited in the Dryad Digital
Repository, datadryad.org (dx.doi.org/10.5061/dryad.3k502).
1C.B.-L. and A.M.-B. contributed equally to this work.
2To whom correspondence should be addressed. Email: chris.barrington-leigh@mcgill.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1504033112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1504033112 PNAS Early Edition | 1 of 6

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1504033112&domain=pdf&date_stamp=2015-06-10
http://datadryad.org
http://datadryad.org/resource/doi:10.5061/dryad.3k502
mailto:chris.barrington-leigh@mcgill.ca
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504033112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504033112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1504033112


appear to be less sprawling than their earlier counterparts. By
directly identifying the properties of new construction, our
metrics highlight the decisions that are driving change, even
though the impact on the stock is gradual. Third, we provide ev-
idence that urban sprawl is a persistent phenomenon—perhaps
partly due to path dependencies in development decisions. There
is a close correlation between the extent of sprawl in earlier time
periods and that of contemporary development.

Measuring Street-Network Sprawl
We conceptualize sprawl as low connectivity in the street network.
For a given geographic area, we construct measures of (i) mean
nodal degree [i.e., the number of connected edges (incoming
roads) at each intersection], (ii) the proportion of dead ends (i.e.,
nodes of degree one), and (iii) the proportion of nodes of degree
four or more. Sprawl is characterized by a low nodal degree of
intersections, a high proportion of dead ends, and a low pro-
portion of nodes of degree four or more, all of which imply a street
network with limited connectivity.
Our measures of sprawl, or related ones such as intersection

density, are commonly used in urban planning and transportation
research (12–15). However, the literature offers many alterna-
tive measures, such as density, contiguity of the built-up area,
segregation of land uses, and urban design. Because sprawl is a
multidimensional characteristic of urban areas, we discuss some of
the alternative ways to operationalize it in SI Appendix, section S3.

We focus on street connectivity on theoretical and policy grounds.
First, the connectivity of the street network is a semipermanent
feature of the urban landscape and reflects decisions by cities and
landowners at the time of initial development. Street rights of way
are rarely vacated, so four-degree intersections usually remain that
way. Opposition by homeowners fearing increased traffic, not to
mention the costs of demolishing existing buildings, mean that dead-
end streets also usually remain dead ends. In contrast, characteristics
such as density tend to change over time in response to evolving
prices, consumer preferences, and public policy. Second, street-
network sprawl relates directly to important externalities such
as greenhouse gas emissions and public health. Street connectivity
is highly correlated with vehicle travel and modal split (3) and the
incidence of diabetes, asthma, and similar health issues (16). Less
connected streets increase the ratio of network distance to Eu-
clidean distance, which reduces the generalized cost of driving
relative to walking, and they are less conducive to pedestrian-ori-
ented development and public transit service. Third, our measures
of sprawl offer extremely high spatial and temporal resolution,
rather than being constrained by the available geographic aggre-
gation units, decadal gaps in census data, or the resolution offered
by remote sensing technologies.
We therefore use “sprawl” as shorthand for “street-network

sprawl” in the remainder of this article. SI Appendix, section S3
provides more analysis of how our measures of sprawl relate to

A

B

Fig. 1. Trends over time, US urbanized areas 1920–
2012. Clearly evident are the rise in sprawl through
most of the 20th century, the correlation with arche-
typal street designs, and the decline in sprawl since the
mid-1990s. (A) The three measures of sprawl exhibit
similar trends, with street networks becoming in-
creasingly sprawl-like from 1950 through sprawl’s peak
in 1994. The 95% confidence intervals are shaded or
too narrow to be discernible. Our preferred time series
is parcel-based, represented by the solid black lines. As
described in Materials and Methods, we validate our
findings using two alternative time series, which show
broad agreement. A 5-y rolling mean is used before
1950. Also indicated in the Upper panel are key policy
events noted in ref. 17: (a) the Radburn design,
(b) report by the Committee on Subdivision Layout,
(c) report by the Federal Housing Administration,
(d) report by the Institute for Transportation Engineers,
and (e) founding of the Congress for the New Urban-
ism. (B) We identify empirical examples of the five ar-
chetypal street design patterns described in ref. 17 and
show that the nodal degree of these examples gen-
erally matches the overall trends. Location names refer
to the approximate neighborhood or city (e.g., Park
Hill) and the metropolitan area (e.g., Denver). We
also illustrate the 1928 Radburn design and the re-
cent New Urbanist development of Stapleton, which
represent opposite extremes in terms of street con-
nectivity. A widespread move toward New Urbanism
would eventually restore levels of sprawl to early
20th century levels. Underlying images courtesy of
ESRI/Digital Globe.
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vehicle ownership and travel, and how they correlate with al-
ternative metrics such as residential density.

Sprawl’s Rise and Decline
The Upper panel of Fig. 1 shows the trends over time for each of
the three measures of sprawl (nodal degree, fraction of dead
ends, and fraction of nodes of degree four of more). Several
conclusions are immediately evident.
First, Fig. 1 indicates a rise in sprawl since the mid-1920s, with

an acceleration after 1950. The early beginning of sprawl is no-
table, given that it predates the postwar era of mass car owner-
ship. However, it provides quantitative evidence to confirm
historical accounts that date the emergence of cul-de-sacs and
similar departures from gridiron street patterns to the early to
mid-20th century. Southworth and Ben-Joseph (17), for example,
note the influence of the 1928 design, with cul-de-sacs promi-
nently featured, for Radburn, New Jersey; they also point to the
influence of recommendations for cul-de-sacs in reports by the
Committee on Subdivision Layout (1932), Federal Housing
Administration (1936), and Institute for Transportation Engi-
neers (1965). These discrete events do not capture the more
gradual evolution in street network design from the 1950s
through the early 21st century, but our results closely match the
archetypal patterns reported in ref. 17 and illustrated in the
Lower panel of Fig. 1.
Second, there is a clear peaking of new sprawl construction in

the mid-1990s and a subsequent decline since 2000 to the level of
the 1960s. Mean nodal degree rose from ∼2.60 at sprawl’s 1994
peak to ∼2.83 in 2012. Although a reversal in street connectivity
trends might be expected at some point in response to changes in
fuel prices, the 1994 peak predates the post-2000 rise in gasoline
prices. Conversely, the ∼1980 spike in fuel prices was not asso-
ciated with a similar reversal in sprawl. An alternative possibility
is that, just as the 1928 Radburn design was associated with the
initial rise in sprawl, the recent move toward more connected
street patterns reflects the growth in New Urbanist thinking and
policy since the Congress for the New Urbanism was founded in
1993. One prominent New Urbanist development, Stapleton, has
a mean nodal degree of ∼3.47 (Fig. 1B).
Our results are in contrast to recent findings (18) that street-

network sprawl continues to increase, albeit at a slower rate than
before (11). However, results in refs. 11 and 18 measure only the
stock of streets (which we also illustrate in Fig. 1), whereas our
method is sensitive to the year-by-year developments. Our results
report a major turnover and reversal in the new contributions to
that stock before the turn of the century. Thus, we identify two
important turning points. In ∼1994, the nodal degree of new
intersections (the flow) reached its minimum. Due to the exis-
tence of cities with dense, gridded cores, the road network stock
was still tending toward more sprawl until ∼2012, when the nodal
degree of new intersections rose to the level of the stock.
The trends are mirrored in individual metropolitan areas. The

four Combined Statistical Areas (CSAs) shown in Fig. 2 are il-
lustrative only, but a similar pattern is evident in other metro-
politan regions, reported in SI Appendix, Fig. S6. In all cases,
nodal degree falls most rapidly from the 1950s through the mid-
1990s (ending earlier in the Minneapolis–St. Paul and Wash-
ington, DC regions) and has risen since the start of the 21st
century. The differences between the metropolitan areas are
most evident in terms of the level of sprawl (New York and
Miami being less sprawling than Seattle and Los Angeles) rather
than the relative trends. As discussed in detail in The Dynamics
and Persistence of Sprawl, there is evidence of persistence in
relative levels over time. The New York–Newark region, for
example, is endowed with a historic stock of highly connected
streets, and additions to this stock in almost every year are less
sprawl-like than the other metropolitan regions illustrated.

Spatial Patterns
With urban form quantified at the level of individual intersections,
we can generate a complete account of the dynamics of sprawl

over space and time. Fig. 3A shows three snapshots of postwar
development for one illustrative region, the Minneapolis–St. Paul
metropolitan area. Outside the 1950 core, degree three in-
tersections became the dominant road form before 1980. The
aggregate distribution of nodal degree values over time is shown in
Fig. 3B, along with the overall volume of construction. Road edges
connected to at least one degree four intersection are prevalent
until the mid-1950s, when the proportions of dead ends and de-
gree three nodes rise rapidly. A regrowth in the fraction of degree
four nodes (at the expense of degree three and dead ends) is
visible starting around 2000, before a steep decline in street con-
struction following the housing market crash of 2007–08.
The maps in Fig. 3 do not emphasize the location of recent

construction or changes in urban form. A second approach to help to
understand where the changing development style is occurring, both
within and between metropolitan areas, is shown in Fig. 4. It depicts
the most recent levels of nodal degree, averaged to census block
groups for selected major metropolitan areas. SI Appendix provides a
similar view of new additions to the stock in recent years at the block
group level, as well as snapshots of levels (stocks) in other years.
Blue areas, with high nodal degree, are characterized by the

most grid-like road networks, and red and dark red represent the
dead end and degree three neighborhoods characterizing sprawl.
There are stark contrasts in accumulated development patterns
that defy simple geographic generalizations. Many major cities
have urban cores with a highly gridded structure, whereas some,
like Atlanta, have very little. Most interestingly, the changes, shown
in SI Appendix, Fig. S7, in mean nodal degree between 1991 and
2013 suggest recent trends that are not predicted simply by the
stocks shown in Fig. 4, nor by a portrait of the stocks as they were
in 1991 (SI Appendix, Fig. S7). Development in the suburbs of
Seattle, the San Francisco Bay Area, and Dallas have shown sig-
nificant increases in nodal degree, whereas the metropolitan area
of Atlanta appears to have continued its embrace of low-connec-
tivity, cul-de-sac road networks. In Boston, development patterns
appear to have been different in the northern suburbs (higher
nodal degree) than in the western areas. It should be noted that
these maps disproportionately emphasize large (low-density) block
groups, and much of the fine detail is not resolved in Fig. 4. Maps
of a large number of urban areas are linked in SI Appendix.
We now turn our attention to a larger spatial scale and consider

aggregate-level differences between metropolitan regions and
counties. SI Appendix, Table S1 ranks US metropolitan areas

Fig. 2. Trends over time, selected metropolitan areas. Trends at the met-
ropolitan area level largely mirror those for the United States as a whole.
Data are for CSAs designated by the US Census Bureau. We focus on results
from our parcel-based dataset (thicker lines, with 95% confidence intervals
shaded), which only provides partial coverage of each CSA. However, similar
results are obtained using our Census-based dataset (thinner lines), which is
shown for comparison and covers all counties in a given CSA. Note: Before
1980, a 5-y rolling mean is used.
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according to the change in nodal degree between 1991 and 2013.
Many of the “usual suspects,” such as San Francisco toward the top
and Atlanta and Charlotte toward the bottom, occupy their ex-
pected positions. For example, the rankings support the impression
from Fig. 4 that Atlanta has continued to pursue low-connectivity
development. However, there are some surprises, most notably high
rankings for Dallas–Fort Worth, Texas; Oklahoma City, Oklahoma;
and Birmingham, Alabama—not normally well-known as policy
environments seeking to reduce private car use.
In the case of Dallas, the rankings do provide suggestive evi-

dence for the impact of antisprawl policies. The 1998 City of Dallas
Comprehensive Plan, for example, requires residential neighbor-
hoods to be “served by a grid street system, which minimizes the
use of cul-de-sacs” (ref. 19, p. 9). Elsewhere, the rankings lack a
clear link to land-use regulations, and places with long-standing
(pre-2003) policies to discourage or prohibit cul-de-sacs and
promote connected streets, such as Portland, Oregon; Austin,
Texas; Charlotte, North Carolina; and Cary, North Carolina (the
latter being in the Raleigh–Durham metropolitan area) (20, 21), lie
in the middle to bottom of the rankings in SI Appendix, Table S1.
Most street connectivity policies, however, are undertaken at the

municipal level. Absent a concerted metropolitan- or state-wide
effort (such as that in Virginia, which enacted statewide standards
in 2009 that strongly discourage cul-de-sacs), local-level policies are

unlikely to influence the metropolitan-wide rankings. Moreover, our
rankings are based on changes in the level of the stock, using our
Topologically Integrated Geographic Encoding and Referencing
(TIGER)-based series, which will respond to policy changes only
slowly. Therefore, SI Appendix, Table S2 ranks counties according
to the change in the nodal degree of new construction since sprawl
reached its mid-1990s peak, using our parcel-based series.
Here, there is more suggestive evidence for the impacts of anti-

sprawl policies at the local level. The county with the largest increase
in nodal degree is Travis, Texas, where the principal city (Austin) has
promoted more connected streets—initially through individual de-
velopments, such as the New Urbanist airport reuse plan, and more
recently at a citywide level. The second-ranked county, Mecklenburg,
North Carolina, is home to the city of Charlotte, which as noted
above has long-standing street connectivity policies. Although the
Charlotte region as a whole may still be sprawling (SI Appendix,
Table S1), city-level regulation appears to be making a difference
on a smaller scale. In Alachua, Florida (ranked third), the city of
Gainesville adopted in 1999 a Traditional Neighborhood De-
velopment overlay zone that prohibits cul-de-sacs in the areas
where it is applied. Gainesville is also home to several prominent
New Urbanist developments such as Haile Village Center, Tioga,
and Bryton. In Franklin County, Ohio (ranked fifth), the City of
Columbus adopted a New Urbanist Traditional Neighborhood
Development ordinance, whereas in Pierce County, Washington
(ranked sixth), the largest city (Tacoma) has policies in its General
Plan and development code that strongly discourage cul-de-sacs.
Such anecdotal evidence of formalized policies can be expected

to represent a broader and underlying trend in design ideals and
objectives, just as earlier development styles were sometimes
formalized into codes and bylaws. Nevertheless, our findings here
are suggestive only, and this simple analysis does not formally

Fig. 3. Spatial and temporal patterns of sprawl in the Minneapolis–St. Paul re-
gion. Individual edges—that is, road segments bounded by two intersections—
are shown at three time points. Edges are colored in five categories ac-
cording to their connectivity, ranging from highly connected (gridded) in blue
to cul-de-sacs in red. Connectivity is measured by the mean degree of an
edge’s two terminal intersections, explained in the text. Because nodes can be
cul-de-sacs, degree three, or degree four-plus, there are five possible values of
edge degree, ranging from 2.0 to 4.0. In 1950, the developed area is largely
gridded, but growth by 1980 and by 2013 is largely of the low-connectivity
kind. Rural roads also tend to be gridded. The Lower Right panel shows the
fraction, indicated by the vertical extent of a color, of each edge type built
each year. The black line shows the pace of construction, defined as the
number of edges dated to each year. Dramatic drops are evident during the
Depression, World War II, oil shocks, a recession in the 1970s and 1980s, and
the recent Global Financial Crisis. We focus on Minneapolis–St. Paul because
all seven central counties are included in our parcel-based data and because
the region closely tracks national trends (SI Appendix, Fig. S6).

Fig. 4. Mean nodal degree in selected metropolitan areas. We find stark
variation across metropolitan areas both in the stock and (shown in SI Ap-
pendix) in recent construction. Mean nodal degree of street networks is
shown for census block groups of selected metropolitan areas in 2013.
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quantify the role of local policies—not least, due to the lack of a
comprehensive database on zoning regulations. Moreover, other
factors clearly affect the connectivity of both the stock and new
construction. For example, Fig. 4 and SI Appendix, Tables S1 and
S2 suggest some persistence over time. Counties and regions that
were sprawling in the past continue to develop in a similar man-
ner. The following section explores the theoretical basis and ad-
ditional empirical evidence for this phenomenon.

The Dynamics and Persistence of Sprawl
What light can the full power of a spatial time-series of urban form
shed on the dynamics of sprawl? Our nation-wide data provide
evidence of remarkable persistence in differences across regions,
simultaneously with roughly parallel shifts in development pat-
terns in different regions over time.
The results in Fig. 5A, showing that nodal degree generally falls

with distance from the city center, come as no surprise, given the
spatial association between sprawl and suburbia. However, it is
remarkable that the spatial gradient of street connectivity has
remained relatively constant since 1939. Although sprawl was rising
until ∼1994 and declining thereafter, similar changes have occurred
in city centers as in exurbs. A similar dynamic is in evidence when
considering the gradient of sprawl against nearby development
(Fig. 5B) and residential density (Fig. 5C). In principle, the changes
in mean degree of road networks that we find in recent years could
be due to a different pattern of where new intersections are built—
for instance, as more infill development occurs in dense, urban
cores with connected streets in adjacent neighborhoods, as shown
in ref. 9. Changes in the amount of infill notwithstanding, our
findings indicate that the decline in sprawl is also due to a different
style of road network being built across a range of urban contexts.
In other words, the changes cannot be explained simply by a new
focus on infill in the city center but rather reflect a broader shift in
development patterns across the entire metropolitan area.
Fig. 5 also suggests that there is persistence in relative terms in

sprawl. In other words, places that were built with a low-connectivity
street network tend to stay that way, even as the network expands.
We examine persistence directly in Fig. 6. Metropolitan regions that
had a sprawling street-network stock in 1991 experience the greatest
level of sprawl for new construction in 1999–2013 (Fig. 6A). In
general, the most sprawling regions in 1991 such as Atlanta and
Charlotte continued in that vein in more recent years, as did regions
at the opposite end of the sprawl spectrum, such as Dallas–Fort
Worth. An even stronger relationship is seen at the county level
(Fig. 6B), where our parcel-based series provides better temporal
resolution. Furthermore, geographic variation in development pat-
terns is persistent across even longer time periods; the development
decisions that were taken more than 50 y ago are highly predictive
of contemporary new development. Near the extreme, Denver,
Colorado (home to the New Urbanist Stapleton development
shown in Fig. 1B) was largely gridded in 1992, and virtually no dead
ends were built in 2008–12 (Fig. 6B and SI Appendix, Table S2).
In our view, this persistence highlights the importance of the

turnaround reported here, both because the turnaround is likely to
be permanent and because it is despite large inertial influences.
These correlations between past and present sprawl may be

due to the persistence of physical, geographic, and political
factors, such as topography and political attitudes toward private
car use. The correlations, however, may also indicate some path
dependence. Lower density, car-oriented development offers
greater returns for developers if it matches the prevailing pattern
of development. Conversely, it makes less sense to build a walkable
neighborhood if there is nowhere to walk to.

Conclusions
The quasi-permanence of roadways means that urban develop-
ment decisions have effects that last for generations. The historic
gridded centers of US cities and the narrow, winding streets of
European medieval towns are still in place today (17), and the
low vehicle travel and emissions of cities like San Francisco and
New York are largely due to the fact that their street networks
were laid down before the private car became dominant. Con-
versely, sprawl today—in the form of street networks with low
connectivity and high proportions of dead ends—will lock in
vehicle travel and emissions for decades to come.

A B C

Fig. 5. Uniformity of shifts in sprawl. Nonparametric
estimates of the connectivity of roads (mean degree
of intersections) as a function of their distance from
city center (A), of the mean nodal degree within 1 km
in 2013 (B), and of the local population density (C).
Over time the relationships fall roughly uniformly
and then rise again. Shaded bands show 95% confi-
dence intervals. Values are national averages from
our parcel dataset.

A B

Fig. 6. Persistence of sprawl. (A) Nodal degree of new development, 1999–
2013, against nodal degree of the stock (1991), by CSA. Labeled points are
highlighted in a darker shade. Most metropolitan regions lie below the 45°
line, indicating that the sprawl of the stock increased between 1999 and
2013, but as discussed in Sprawl’s Rise and Decline, this is consistent with a
turnaround in the connectivity of new construction given that the stock
includes many gridded neighborhoods built before the era of mass car
ownership. Data (TIGER-based series) are the same as SI Appendix, Table S1.
(B) Nodal degree of new development, 2008–12 versus 1993–97. These time
periods represent, respectively, the most recent years in our parcel-based
dataset and the time when sprawl was at its peak in ∼1993–97. Colors de-
note the stock of sprawl in 1992 and demonstrate the persistence of sprawl;
counties that had high nodal degree in 1992, and also in the 1993–97 period,
were more likely to continue to build connected streets in 2008–12. Also,
almost all counties lie above the 45° line, indicating a turnaround in the
connectivity of new development. Data (parcel-based series for a subset of
counties) are the same as SI Appendix, Table S2.
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In this paper, we present a unique, geographically disaggregated,
long-run time series that quantifies the rise of sprawl in the United
States from the early 20th century, its acceleration from the 1950s,
its peak in the mid-1990s, and its subsequent decline. Although the
peak and decline are apparent across the country, we find tentative
signs that the decline in sprawl is most pronounced where local
governments have adopted policies to improve the connectivity of
the street network—for example, by prohibiting or discouraging
cul-de-sacs. Moreover, we find that the connectivity of recently built
streets is strongly associated with the connectivity of the earlier
stock. In other words, early patterns of street connectivity may in-
fluence the nature of recent development: Sprawl begets sprawl.
The impacts of low-connectivity street networks on vehicle travel

and emissions are well-documented (SI Appendix, Fig. S5) (3).
Thus, the impacts of a turnaround in sprawl are likely already being
felt, and it is notable that street-network sprawl peaked just a de-
cade before per-capita travel demand reached a maximum in the
United States in 2005 (22). In other words, peak sprawl is one
potential contributor to the “peak travel” phenomenon. Moreover,
the persistence and path dependence of shifts in urban form will
have implications for the energetics and greenhouse gas emissions
of future inhabitants of suburban neighborhoods. Just as the
existing stock of locked-in sprawl from the mid- to late 20th century
represents an enormous inertia, newly developed, connected street
patterns will continue to affect vehicle travel and emissions for the
next century and beyond. Path dependence implies that street
connectivity has a secondary effect through influencing the con-
nectivity of future streets. Thus, although we do not quantify
greenhouse gas emissions impacts in this article, feedbacks are
likely to mean that reductions compound in the future. Emission
scenarios that adopt a short time horizon and/or fail to account for
path-dependence processes are likely to underestimate the climate
policy potential of land-use and transportation strategies.
The local policies—in particular, ones directly targeting the

nodal degree of intersections—which we have highlighted as con-
tributing to less sprawling construction in some areas, can be seen
as just one element in a package of policies to promote denser,
mixed-use, connected development patterns. Pursuit of this agenda
can shape the fundamental infrastructure and incentives that guide
future sustainable urban development pathways, both in the United
States and in fast-growing cities around the world.

Materials and Methods
We generate three different time series of sprawl. Each series uses the most
recent vintageof TIGER/Line files from theUSCensus Bureau to characterize the

current road network but estimates the historical development of the network
in a different way using (i) earlier vintages of the TIGER/Line files, (ii) the
American Community Survey, or (iii) tax records for individual land ownership
parcels. Because we are interested in urban sprawl, we limited our results to
urbanized areas, defined as block groups where the majority of blocks were
classified as urban in the 2010 Census. SI Appendix, section S1 provides more
details of data sources and our algorithms for constructing the three series:

� The TIGER/Line series computes our measures of sprawl for all counties in
the United States using four different vintages of the TIGER/Line shape-
files, corresponding to the street network in 1991, 1999, 2009, and 2013.

� The Census-based series is constructed through assigning themedian year built
of residential units in each census block group to all streets in that block group.

� The Parcel-based series is constructed from tax records for individual land
ownership parcels. We match each parcel to the street network using a com-
bination of address and geospatial data and succeed inmatching 95.1% of the
23,191,172 parcels for which we have year-built information. The 226 counties
in the parcel-based series account for 9.7% of the 2,338 counties and county
equivalents in the United States with at least one urbanized block group and a
higher (32.7%) share of the urbanized area population. SI Appendix, Fig. S1
shows the spatial distribution of the counties in our parcel-based series.

In short, the different time series all rely on the 2014 vintage of the TIGER/
Line files but use different data sources to reconstruct the historical de-
velopment of the street network through estimating the year in which each
network edge was built. In general, we use the parcel-based series to report
our main results, given the high resolution and length of the series, and
because (unlike the Census-based series) it does not make assumptions about
homogeneity of construction dates within a census block group. We rely on
the TIGER/Line and Census-based series to validate our findings and assess the
extent to which the parcel-based series provides results that are represen-
tative of the entire United States.

Note that the TIGER/Line series reflects the characteristics of the stock of
streets in a given year. The other two series reflect the construction of new
streets in a given year—that is, additions to the stock.

Data series in tabular, geographic, and graph theoretic formats; an in-
teractive map explorer of summary data; and road evolution videos are
available online at sprawl.ihsp.mcgill.ca/PNAS2015. Downloadable data are
also archived at dx.doi.org/10.5061/dryad.3k502.
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S1 Materials and Methods

S1.1 Data Sources

We quantify street-network sprawl using three different time series, discussed
briefly in the main text. Here, we provide additional detail on each series.

1. The TIGER/Line series computes our measures of sprawl for all counties
in the US, using four different vintages of the TIGER/Line shapefiles:
1992, 2000, 2010 and 2014. Because of lags in the data gathering and
release process, we assume each vintage represents the characteristics of
the street network in the previous year (1991, 1999, 2009 and 2013).1

2. The Census-based series computes our measures of sprawl for all counties
in the US, using the 2014 vintage of the TIGER/Line shapefiles. We
construct earlier years of the time series through assigning the median
year built of residential units in each census block group (as reported
in the US Census Bureau 2007-11 American Community Survey) to all
streets in that block group. This yields a time series from “1939 or earlier”
(the earliest category for year built that is reported) to “2005 or later”.

3. The Parcel-based series also computes our measures of sprawl using the
2014 vintage of the TIGER/Line shapefiles. We construct earlier years of
the time series by using tax records for individual land ownership parcels,
which we obtain directly from county governments or from the commercial
aggregator Boundary Solutions. Figure S1 shows the locations of the 226
counties for which we have parcel data, and the number of parcels from
each. We match each parcel to the street network using a combination
of address and geospatial data, and succeed in matching 95.1% of the
23,191,172 parcels for which we have year built information. Section S1.2
describes our matching algorithm in detail. We then assign to each street
edge the year in which the earliest structure on that edge was built. In
other words, we assume that a street was built at the same time as its
earliest structure. For each node, we assign the year of the most recent
connected edge. This yields a time series from 1920 (before which county
data on the year a structure was built appear to be less reliable) to 2012,
for the 226 counties that are at least partly urbanized, and for which we
could obtain suitable parcel data. The 226 counties in the parcel-based
series account for 9.7% of the 2,338 counties and county-equivalents in the

1The year in which an edge first appears in the TIGER/Line files varies depending on the
Census Bureau update cycle; there is often a lag of many years between construction and
incorporation into TIGER/Line. While it is technically possible to construct an annual time
series from 1992-2014, a comparison to historic satellite imagery suggested that the data do not
support an annual temporal resolution. Moreover, the MAF/TIGER Accuracy Improvement
Project (2003-08) appears to have introduced inconsistencies into many counties which were
subsequently corrected (for example, by classifying driveways as regular urban streets). We
therefore restrict our time dimension to the earliest vintage, the two years of the decennial
census, and the most recent vintage.
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US with at least one urbanized block group; and a higher (32.7%) share
of the urbanized area population.

The three different time series exhibit trends that are generally consistent (Fig-
ure 1 in the main text). However, there are differences in levels between the
TIGER/Line and Census-based series (where our data include all nodes in the
underlying Census Bureau files), and the parcel-based series (where our data are
restricted to the subset of nodes where at least one connected edge has a parcel
with year-built information). In practice, this means that a lower proportion
of deadends is estimated from the parcel-based series, because (i) deadends are
more likely to be service or other access roads without associated buildings; and
(ii) missing data (e.g. lack of year-built information) is more likely to affect
deadends, as missing data for a single edge will lead to missing data for the
node. In contrast, data would need to be missing for all 3 or 4 connected edges
for this to happen with a 3- or 4-degree node. Mean nodal degree of the 2013
stock was 2.73 according to the TIGER/Line series, and 2.83 according to the
parcel-based series. However, these differences are unlikely to affect the analysis
in this paper, because trends over time are consistent between the two series.

S1.2 Matching parcels to street edges

This section provides more details of our matching algorithm to link county
assessor parcels (which provide the information on the year a structure was
built) with edges (i.e., street segments).

Our matching algorithm uses two main inputs for each parcel: (i) the edges
that are within 20m of the boundaries of a given parcel; and (ii) the geocod-
ing functionality in ESRI’s ArcGIS software. Figure S2 shows the process for
matching parcels to edges for the 216 of 226 counties in the parcel dataset that
have address data, and the percentage of matches that is obtained through each
matching method. For the 10 counties where the parcel dataset omits address
data (but includes year-built information), a simplified version of the algorithm
is used: a parcel is matched to an edge if and only if there is a unique edge
within 10m of the parcel boundary.

We calculate our measures of street-network sprawl at the level of individual
nodes and edges, before aggregating (where required) to census block groups,
metropolitan regions and other geographic units. Where two nodes are within
15m of each other, we treat them as a single node for purposes of calculat-
ing nodal degree. As shown in Figure S3, this procedure accounts for offset
intersections (i.e. “dog-legged” or adjacent T-intersections) that functionally
are the same intersection, as well as allowing for misaligned streets and other
potential imperfections in the TIGER/Line geometry. The 15m distance is ap-
proximately the width of a typical two-lane urban street, including on-street
parking and sidewalks. We ignore edges that are completely contained within
an intersection (defined as a 7.5m radius from each constituent node), so that
short edges that connect within an offset intersection, expressway ramps and
similar elements of the street network do not inflate nodal degree.
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Figure S1: Distribution of counties with parcel data. We obtained year-built information for buildings in 226 counties
with urban areas, broadly spanning the US and accounting for ∼33% of the urbanized area population.
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Figure S2: Algorithm to match parcels to street edges.
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Figure S3: Calculation of nodal degree. Each geometric node is buffered
(7.5m radius), and overlapping buffers are merged to create our dataset of nodes.
In the simple case (a), calculated nodal degree is simply the number of connected
edges at each geometric node. Where intersections are offset (b), our procedure
merges the adjacent 3-degree nodes to create a 4-degree node. In the complex
case of a divided highway (c), our procedure disregards edges that fall entirely
within the overlapping buffers; this allows us to ignore freeway ramps, median
connectors, and similar streets that do not functionally affect street network
connectivity. Source for underlying imagery: ESRI/Digital Globe.
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Figure S4: Growth in nodes versus building permit issuance. Compari-
son is for 1991–2013 in counties in our parcel-based series (N=224).

S1.3 Comparison to building permit data

Figure S4 compares our estimates of the growth in nodes from both the TIGER/Line
series (in blue) and the parcel-based series (in red) with building permit issuance
by county governments. Building permit data are from the US Census Bureau
Building Permit Survey. The linear best fit is also shown. The strong correla-
tion between permit activity and new nodes adds confidence to our methods for
constructing the historical time series of intersection growth.

S2 Open data

We provide a dataset with our three measures of street-network sprawl — nodal
degree, percentage of 4+ degree nodes, and percentage of deadends — for down-
load via the journal website. Standard errors are also included. We provide
annual data at the level of counties, metropolitan regions (CSAs and CBSAs),
and the entire United States. Note that the data are limited to urbanized areas,
defined as block groups where the majority of blocks were classified as urban
in the 2010 Census. For completeness, the dataset includes the full time series
from ∼1750. However, due to inaccuracies in the county assessor data, which
records building ages, we caution against relying on data for the early part of
this series. Accordingly, this paper focuses on the period since 1920.

We also provide the full geographic data file for the stock of streets in 2013,
indicating the nodal degree of each intersection. This is provided in shapefile for-
mat, suitable for analysis with most Geographic Information Systems software,
and as a graph file that describes the network.

The data are documented and archived at http://dx.doi.org/10.5061/

dryad.3k502.
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S3 Comparisons with alternative sprawl measures

Sprawl is a multi-dimensional characteristic of urban areas. Under one typol-
ogy [1], there are eight distinct dimensions of land-use patterns that characterize
sprawl, including density, centrality (the distance of development from the Cen-
tral Business District or CBD) and nuclearity (whether a metropolitan area has
a dominant urban center or is polynuclear in character). Preferred measures
of urban sprawl are somewhat discipline-dependent, reflecting different policy
interests and methodological traditions across disciplines. For architects such as
Duany and Plater-Zyberk [2], sprawl is inherently about the rigid segregation
of land uses, and urban design features such as the placement of parking in
the front setback of homes. Economists, in contrast, have tended to focus on
density, the scatteredness of urban development, and the size and spatial extent
of metropolitan areas [3, 4, 5, 6, 7]. In large part, this reflects the intellectual
history of urban economics, where the Alonso-Muth-Mills model, which posits
a monocentric city where all employment is in the CBD and households choose
their distance from the CBD by trading off housing and commuting costs, still
has great influence [8, 7, 9].

Our street network-based measures characterize sprawl as having a low nodal
degree of intersections, a high proportion of deadends, and a low proportion of
intersections of degree four or more. (In graph theory, the degree of a node is
the number of edges, in this case street segments, connected to the node, in this
case the intersection.) Our three measures are empirically or deterministically
related to similar ways to measure street connectivity, such as block length or the
ratio of links to nodes [10]. Other network metrics such as the network-length
linear density of nodes from each node, ratio of network-distance to geographic-
distance, and treeness (dendricity) [11] are also related, but are difficult to
measure in a time-series dataset such as ours where we cannot assign a year to
some edges and nodes.

As noted in the main text, our measures offer several important conceptual
and empirical advantages over alternatives such as density, spatial extent and
centrality. First, our measures are semi-permanent. In contrast to characteris-
tics such as density, which can change over time, the street network indicates
the degree of sprawl at the time it was laid down.

Second, the connectivity of the street network shows a strong theoretical
and empirical relationship with important externalities such as greenhouse gas
emissions. A high proportion of deadends and a low nodal degree of intersections
favor travel by the private car in several ways. Such street patterns typically
increase the ratio of network distance to Euclidean distance, which reduces the
generalized cost of driving relative to walking. In contrast, a gridded street
network tends to be more attractive to pedestrians, is conducive to mixed land
uses, allows more efficient service by public transit, and reduces travel speeds
by the private car through requiring frequent stops. Low nodal degree also
proxies for other factors which favor the private car, such as wider arterials and
longer distances between signalized intersections. Unfortunately, these elements
of walkability, and others such as sidewalk provision, cannot be measured due
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to a lack of comprehensive or consistent data.
In contrast, there is a tenuous externality from sprawl when measured by

the amount of open space in the square kilometer surrounding a house [7]; by
the size or spatial extent of metropolitan areas [3, 4, 5, 6]; or by the extent to
which employment is located within a five-mile radius of the CBD [8]. Even the
commonly used measure of density has a less direct relationship to the external
costs of sprawl than the structure of the street network; density often proxies
for other characteristics of the built environment that affect vehicle travel, and
the relationship of street connectivity with total vehicle distance traveled, as
measured through elasticities, is three times that of population density [12].

Third, a street network-based approach offers extremely high spatial and
temporal resolution. Our units of analysis are street segments (edges) and
intersections. This provides us with the ability to conduct analysis at any spatial
scale, rather than being constrained by the aggregation units for census data or
the resolution offered by remote sensing technologies. Our measures of sprawl
vary within a city, in contrast to measures such as nuclearity and spatial extent
which are a characteristic of an entire metropolitan area. Moreover, our dataset
identifies the year that each street segment was built. In contrast, census-
based measures such as those in [13] are limited to ten-year intervals, and the
availability of remote-sensing data is even more constrained. For example, the
approach in [7] is limited to two years of analysis.

Fourth, our measures of sprawl are less susceptible to issues of scale de-
pendence than alternatives such as intersection density (the number of nodes
per unit area) or residential density. Such density measures vary depending on
the definition of areas; for example, whether parks, water or yet-to-be-developed
land are included when measuring surface area. This presents a particular prob-
lem with time-series analysis. If the geographic units are held constant (and thus
include land that is not developed in early years), such a measure will almost
invariable increase over time within a given geographic unit, as more intersec-
tions or housing units are built. Thus, density-based measures are best suited
for analyzing cross-sectional differences, rather than in the context of the time
series that we employ here. Unlike most existing measures which correspond,
ultimately, to an area density or geographically weighted average of some kind,
our measure amounts to a sum over intersections, and relates to their network
structure, regardless of spatial scale.

In any case, different measures of sprawl are often correlated. Figure S5
indicates the relationship between the nodal degree of intersections and three
alternative measures of sprawl: residential density, the intensity of development,
and a multi-dimensional sprawl index. Nodal degree, the percentage of nodes of
degree 4+, and the percentage of deadends correlate with the other measures in
the expected manner. The weakest relationship is with the impervious surface
area, which indicates that sprawl can be built with varying degrees of imper-
vious surface, for example depending on whether yards and public open spaces
are paved. The impervious surface data are are the basis for the analysis in
[7], although their measure (the extent to which development is “scattered”) is
constructed somewhat differently.
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Hamidi & Ewing’s aggregated sprawl index (which considers street connec-
tivity as one element along with density, mix of uses, and the concentration
of population and employment in defined sub-centers) [13] is one example of a
composite index, often devised to rank urban areas according to their degree of
sprawl. [1] use a similar approach to [13], calculating six dimensions and then
summing them into a single index.

All the measures of sprawl also correlate in the expected manner with com-
mute mode share (% of workers commuting by modes other than driving alone)
and vehicle ownership. Given that urban form is one of many factors that af-
fects vehicle ownership and travel, along with income, preferences, and so on, it
is not surprising that there is considerable dispersion around the lines of best
fit (estimated by lowess). However, the directionalities of the relationships are
clearly evident in Figure S5.

S4 Additional results

Below are collected several figures and tables which complement or extend those
given in the main text. Explanations are given in the captions and in the main
text.
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Figure S5: Correlations between alternative measures of sprawl. Log
density, commute mode share and vehicle ownership are calculated based on the
American Community Survey 2007-11. Impervious surface area is calculated
based on the National Land Cover Database 2006 [14]. Hamidi & Ewing sprawl
index is as reported in [13]. Diagonals provide the kernel density plot for each
measure, while off-diagonals plot the relationship between different measures
using a lowess smoother. A one-third random sample is used for visualization
purposes; data are aggregated to the census tract level.
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Figure S6: Trends over time, metropolitan areas. Figure 2 in the main text provides results for selected metropolitan
regions. Here, we show results for the 20 largest metropolitan regions (Combined Statistical Areas as designated by the US
Census Bureau) in our parcel-based dataset, as measured by the number of nodes. The regions shown are not necessarily the
largest in the United States, as most regions are only partially covered in our dataset. Shaded areas represent 95% confidence
intervals.
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Figure S7: Levels and changes over time in mean nodal degree in se-
lected metropolitan areas. Levels in mean nodal degree are shown at three
points in time (top left, top right, and bottom left). The third plot (2013) is the
one featured in Figure 4 of the main text. The bottom right panel shows the
change in mean degree between 1991 and 2013 for block groups with significant
increases in census-reported housing units. Regions are mapped to the same
scale.
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Metropolitan Region Mean nodal degree % Degree 4+ % Deadend

1991 1999 2009 2013 1991–2013 1991 1999 2009 2013 1991–2013 1991 1999 2009 2013 1991–2013

Urbanized US 2.80 2.75 2.74 2.74 2.60 22.9 21.7 21.4 21.5 17.9 21.3 23.2 23.9 23.5 29.0

Harrisburg-York-Lebanon, PA 2.89 2.87 2.86 2.88 2.86 25.9 25.3 25.2 25.5 24.3 18.7 18.9 19.6 18.8 19.0
Dallas-Ft Worth, TX-OK 2.91 2.88 2.86 2.87 2.81 24.4 23.4 25.4 25.7 28.0 16.9 17.8 19.8 19.2 23.3
Oklahoma City-Shawnee, OK 2.95 2.91 2.88 2.88 2.74 28.4 26.7 25.1 24.9 18.4 16.5 18.1 18.7 18.4 22.1
Birmingham-Hoover-Talladega, AL 2.71 2.65 2.71 2.72 2.73 20.5 19.1 22.5 22.4 26.1 24.7 27.2 25.6 25.3 26.4
Orlando-Deltona-Dayt. Bch, FL 2.72 2.69 2.69 2.72 2.70 18.8 17.4 17.1 18.0 16.5 23.2 24.3 23.9 23.1 23.1
Denver-Aurora, CO 2.86 2.81 2.80 2.80 2.69 25.2 24.4 23.5 23.7 20.7 19.5 21.5 22.0 21.7 25.9
San Jose-San Francisco-Oakland, CA 2.69 2.67 2.68 2.69 2.69 19.7 19.0 21.6 21.8 27.3 25.2 26.0 27.0 26.4 29.4
Milwaukee-Racine-Waukesha, WI 2.92 2.88 2.86 2.87 2.67 29.2 28.3 27.3 27.9 22.7 18.6 20.0 20.4 20.4 27.8
New Orleans-Metairie-Hammond, LA-MS 2.98 2.95 2.87 2.88 2.66 34.8 33.9 31.1 30.8 21.9 18.6 19.6 22.0 21.5 27.7
Boston-Worcester-P’dence 2.71 2.67 2.70 2.70 2.66 15.5 14.8 15.3 15.2 14.3 22.1 24.1 22.7 22.6 24.0
Austin-Round Rock, TX 2.73 2.70 2.69 2.71 2.66 18.2 17.7 18.7 18.9 20.3 22.8 24.1 24.9 24.1 27.0
Memphis-Forrest City, TN-MS-AR 2.72 2.65 2.70 2.70 2.66 19.4 17.6 19.7 19.7 20.3 23.6 26.1 25.1 24.9 27.1
Hartford-West Hartford, CT 2.66 2.64 2.65 2.66 2.66 12.8 12.4 12.4 12.7 12.4 23.2 24.4 23.8 23.3 23.4
Philadelphia-Reading-Camden, PA-NJ-DE-MD 2.90 2.87 2.85 2.85 2.65 25.2 24.5 24.0 23.9 18.5 17.6 18.8 19.5 19.3 26.5
Indianapolis-Carmel-Muncie, IN 2.82 2.75 2.75 2.76 2.65 24.7 22.7 21.7 21.9 17.1 21.4 23.8 23.4 23.2 26.1
Miami-Ft L’dale-Pt St. Lucie, FL 2.90 2.84 2.81 2.83 2.65 24.2 22.7 21.8 22.6 18.7 17.1 19.1 20.3 19.9 26.9
New York-Newark, NY-NJ-CT-PA 2.86 2.82 2.81 2.82 2.65 23.1 22.5 21.6 22.0 16.5 18.7 20.1 20.1 19.9 25.9
Minneapolis-St. Paul, MN-WI 2.87 2.81 2.78 2.80 2.64 27.2 25.3 24.0 24.8 19.9 19.9 22.0 23.0 22.5 27.9
Columbus-Marion-Zanesville, OH 2.79 2.74 2.72 2.73 2.64 22.1 20.1 19.3 19.3 14.7 21.8 23.2 23.8 23.2 25.5
St. Louis-St. Charles-F’ton, MO-IL 2.73 2.68 2.70 2.70 2.64 20.9 19.9 20.3 20.1 18.1 24.2 26.1 25.2 25.1 27.3
Chicago-Naperville, IL-IN-WI 2.94 2.90 2.86 2.87 2.61 29.8 28.4 27.0 27.1 16.7 17.9 19.3 20.3 19.9 27.7
Detroit-Warren-Ann Arbor, MI 2.94 2.88 2.85 2.86 2.59 28.6 25.9 24.6 24.9 13.0 17.1 18.9 20.0 19.5 27.1
Phoenix-Mesa-Scottsdale, AZ 2.83 2.75 2.71 2.72 2.59 20.8 18.4 16.1 15.9 10.2 19.0 21.5 22.4 22.1 25.8
Los Angeles-Long Beach, CA 2.79 2.74 2.72 2.72 2.59 22.4 21.0 21.9 21.8 20.4 21.9 23.4 24.9 24.7 30.9
Pittsburgh-New Castle-Weirton, PA-OH-WV 2.79 2.77 2.73 2.75 2.58 22.6 22.5 21.6 22.0 19.6 21.6 22.7 24.1 23.6 30.8
Salt Lake City-Provo-Orem, UT 2.69 2.65 2.63 2.64 2.58 18.4 17.1 16.4 16.3 13.6 24.7 26.3 26.6 26.0 27.9
Seattle-Tacoma, WA 2.58 2.55 2.58 2.57 2.56 20.0 19.3 18.0 17.9 13.1 31.0 32.0 30.1 30.2 28.5
Cleveland-Akron-Canton, OH 2.86 2.82 2.76 2.78 2.55 24.7 23.6 21.8 22.4 15.4 19.5 20.9 22.7 22.2 30.3
Sacramento-Roseville, CA 2.64 2.61 2.61 2.61 2.55 15.6 15.1 15.4 15.4 14.8 25.7 27.0 27.3 27.2 30.1
Virginia Beach-Norfolk, VA-NC 2.64 2.58 2.60 2.60 2.54 20.8 19.4 20.2 20.2 19.2 28.7 30.7 30.3 30.2 32.4
Washington-B’more-Arling., DC-MD-VA-WV-PA 2.62 2.58 2.57 2.59 2.54 18.3 17.5 17.5 18.2 18.2 28.0 30.0 30.2 29.8 31.9
Tampa-St. Petersburg-Clearwater, FL 2.82 2.80 2.76 2.77 2.54 22.1 21.6 21.4 21.6 19.2 19.8 20.7 22.6 22.1 32.7
Kansas City-Overland Park-Kansas City, MO-KS 2.87 2.82 2.77 2.77 2.54 25.7 24.7 23.3 23.3 17.9 19.2 21.6 23.3 23.1 32.1
Las Vegas-Henderson, NV-AZ 2.81 2.70 2.62 2.63 2.52 20.6 17.3 15.5 15.7 12.5 19.9 23.9 26.8 26.4 30.5
Portland-Vancouver-Salem, OR-WA 2.71 2.68 2.63 2.64 2.46 23.9 22.6 20.9 20.9 13.5 26.3 27.4 28.7 28.4 33.7
Grand Rapids-Wyoming-Muskegon, MI 2.82 2.76 2.71 2.71 2.46 24.4 22.3 20.3 20.3 10.0 21.4 23.2 24.9 24.5 32.2
Buffalo-Cheektowaga, NY 2.96 2.92 2.87 2.89 2.45 25.3 24.1 23.1 23.7 13.5 14.8 16.0 17.9 17.4 34.3
Houston-The Woodlands, TX 2.82 2.77 2.69 2.69 2.44 26.2 24.7 23.1 23.0 16.9 22.0 23.9 27.2 26.9 36.3
Jacksonville-St. Marys-Palatka, FL-GA 2.74 2.67 2.63 2.64 2.43 22.0 20.1 18.9 19.2 13.0 24.0 26.6 27.7 27.4 34.8
San Antonio-New Braunfels, TX 2.93 2.87 2.78 2.79 2.43 28.0 26.0 24.1 24.0 13.9 17.6 19.7 22.8 22.7 35.7
Nashville-Davidson–Murfreesboro, TN 2.67 2.59 2.57 2.58 2.42 16.0 15.1 15.6 15.7 15.3 24.5 28.2 29.2 28.7 36.5
San Diego-Carlsbad, CA 2.62 2.59 2.56 2.57 2.42 19.5 18.2 17.6 17.7 12.7 28.6 29.4 30.6 30.3 35.5
Cincinnati-Wilmington-Maysville, OH-KY-IN 2.58 2.53 2.52 2.53 2.40 18.0 17.1 16.9 17.2 15.0 30.0 31.8 32.3 32.1 37.7
Rochester-Batavia-Seneca Falls, NY 2.80 2.76 2.73 2.73 2.39 16.9 16.3 16.2 16.3 13.2 18.5 20.1 21.8 21.6 37.3
Louisville/Jefferson Co.–Eliz.–Madison, KY-IN 2.65 2.60 2.59 2.59 2.35 18.3 17.5 17.3 17.3 12.7 26.7 28.6 29.2 29.1 39.0
Raleigh-Durham-Ch. Hill, NC 2.56 2.46 2.47 2.48 2.34 15.1 13.5 14.0 14.3 13.0 29.3 33.7 33.7 33.1 39.5
Charlotte-Concord, NC-SC 2.59 2.49 2.48 2.49 2.32 14.1 12.5 12.7 12.9 10.7 27.6 31.8 32.3 32.0 39.4
Atlanta–Athens-Clarke Co–Sandy Spr., GA 2.52 2.43 2.42 2.43 2.31 11.5 10.3 10.4 10.6 9.2 29.6 33.5 34.2 33.7 39.2
Greensboro–Winston-Salem–High Point, NC 2.62 2.56 2.55 2.55 2.29 15.3 14.4 15.0 15.0 14.1 26.8 29.3 30.3 30.1 42.4
Greenville-Spartanburg-Anderson, SC 2.76 2.66 2.64 2.64 2.29 15.1 13.8 14.1 13.8 10.0 19.6 23.6 24.9 24.8 40.8

Table S1: Rankings of 50 largest US metropolitan areas by change in nodal degree, 1991–2013. The regions at
the top of the table grew in the most connected manner, while those at the bottom grew with the most sprawl in recent years.
The change from 1991–2013 is an estimate of the average for new intersections, calculated based on changes in the stock of
intersections (i.e., their number and average properties).
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Mean nodal degree % Degree 4+ % Deadend

County 1993-97 2008-12 Change 1993-97 2008-12 Change 1993-97 2008-12 Change

All counties with par-
cel data

2.62 2.80 0.19 14.8 18.6 3.8 26.6 19.1 -7.5

Travis, TX 2.62 3.26 0.64 16.5 41.9 25.3 27.1 8.0 -19.1
Mecklenburg, NC 2.21 2.72 0.51 7.1 16.1 9.0 43.1 22.1 -21.0
Alachua, FL 2.56 3.00 0.44 14.7 25.9 11.3 29.3 13.0 -16.4
Iredell, NC 2.28 2.72 0.43 6.1 12.4 6.3 38.9 20.3 -18.6
Franklin, OH 2.56 3.00 0.43 9.5 17.0 7.5 26.5 8.6 -17.9
Pierce, WA 2.40 2.81 0.41 9.8 18.3 8.4 35.1 18.7 -16.3
Coweta, GA 2.23 2.64 0.41 6.4 10.8 4.4 41.6 23.4 -18.2
St Louis, MO 2.35 2.74 0.39 9.6 13.7 4.1 37.2 19.9 -17.2
Hinds, MS 2.61 2.99 0.39 17.5 20.7 3.2 28.5 10.8 -17.7
Ocean, NJ 2.66 3.04 0.39 16.4 30.9 14.5 25.4 13.3 -12.0
Broward, FL 2.67 3.05 0.38 15.9 30.7 14.8 24.7 12.9 -11.7
Orange, FL 2.63 3.01 0.37 12.8 24.4 11.6 24.8 11.9 -12.8
Union, NC 2.30 2.67 0.36 9.8 12.4 2.6 39.7 22.9 -16.8
Anoka, MN 2.68 3.04 0.36 15.2 26.6 11.4 23.7 11.4 -12.2
Leon, FL 2.54 2.88 0.34 11.7 20.3 8.6 28.6 16.0 -12.7
Clay, FL 2.56 2.90 0.34 14.0 24.8 10.7 28.8 17.3 -11.6
Thurston, WA 2.42 2.73 0.32 11.8 12.7 0.9 35.1 19.7 -15.4
Miami Dade, FL 2.83 3.14 0.31 19.3 31.2 11.9 18.4 8.6 -9.8
Harford, MD 2.56 2.86 0.30 13.7 22.2 8.6 28.9 18.1 -10.8
Fort Bend, TX 2.43 2.73 0.29 12.4 15.0 2.6 34.6 21.2 -13.4
Gaston, NC 2.36 2.64 0.29 11.7 21.8 10.1 37.9 28.6 -9.2
Escambia, FL 2.67 2.95 0.28 19.0 28.1 9.1 26.0 16.3 -9.7
Wake, NC 2.29 2.58 0.28 11.0 13.1 2.1 40.8 27.7 -13.1
Jackson, OR 2.59 2.87 0.28 13.5 26.9 13.4 27.2 19.8 -7.3
Duval, FL 2.37 2.65 0.28 10.3 14.6 4.3 36.5 24.9 -11.7
Hillsborough, FL 2.59 2.86 0.27 12.3 16.0 3.7 26.4 15.0 -11.5
Polk, FL 2.62 2.88 0.26 11.9 20.3 8.4 25.1 16.3 -8.8
Collier, FL 2.60 2.86 0.26 13.8 21.2 7.3 26.7 17.4 -9.3
Bay, FL 2.76 3.01 0.26 19.1 27.9 8.8 21.8 13.3 -8.4
Northampton, PA 2.79 3.04 0.24 17.4 27.0 9.6 19.0 11.7 -7.3
Pinellas, FL 2.62 2.85 0.23 15.5 24.8 9.3 26.7 19.8 -6.9
Seminole, FL 2.59 2.82 0.23 13.6 19.3 5.6 27.2 18.7 -8.5
Denver, CO 3.15 3.37 0.22 40.2 39.2 -1.0 12.7 1.1 -11.7
Palm Beach, FL 2.56 2.78 0.22 14.2 21.7 7.5 29.1 21.7 -7.3
Washington, MN 2.63 2.84 0.21 14.6 14.7 0.1 25.9 15.5 -10.4
Lake, FL 2.59 2.79 0.20 13.0 14.0 0.9 27.0 17.3 -9.7
Hennepin, MN 2.60 2.80 0.20 16.3 19.4 3.0 28.0 19.5 -8.5
Pasco, FL 2.61 2.80 0.19 12.1 13.1 1.0 25.7 16.4 -9.3
Onslow, NC 2.21 2.40 0.19 10.5 14.5 4.0 44.6 37.2 -7.3
Sarasota, FL 2.79 2.98 0.18 15.7 15.2 -0.5 18.2 8.7 -9.4
Okaloosa, FL 2.55 2.74 0.18 11.7 18.6 6.9 28.1 22.4 -5.7
Middlesex, MA 2.61 2.79 0.17 9.8 11.5 1.7 24.2 16.5 -7.7
Queens, NY 3.21 3.38 0.17 38.3 43.7 5.5 8.8 3.0 -5.7
Johnston, NC 2.31 2.47 0.17 8.2 14.0 5.7 38.8 33.3 -5.6
Brevard, FL 2.66 2.83 0.17 13.0 15.3 2.3 23.3 16.2 -7.1
Tarrant, TX 2.73 2.89 0.16 17.3 21.3 4.0 22.0 16.0 -6.0
Citrus, FL 2.98 3.13 0.15 20.3 22.3 2.0 11.2 4.7 -6.5
Collin, TX 2.82 2.96 0.13 22.1 20.7 -1.4 20.0 12.6 -7.4
Denton, TX 2.76 2.89 0.13 17.2 15.6 -1.6 20.8 13.4 -7.3
Volusia, FL 2.78 2.90 0.12 19.1 20.6 1.5 20.5 15.2 -5.2
Osceola, FL 2.79 2.90 0.10 19.6 17.7 -2.0 20.1 14.0 -6.1
Snohamish, WA 2.47 2.57 0.10 13.9 15.5 1.6 33.3 29.1 -4.2
Santa Rosa, FL 2.64 2.73 0.10 13.4 10.4 -3.0 24.8 18.5 -6.3
Delaware, OH 2.64 2.72 0.09 12.3 19.2 6.9 24.3 23.4 -0.9
Kitsap, WA 2.48 2.56 0.08 14.9 11.5 -3.3 33.5 27.7 -5.8
Dakota, MN 2.71 2.79 0.07 18.7 17.8 -0.9 23.6 19.5 -4.2
Polk, IA 2.78 2.84 0.07 24.6 24.8 0.1 23.5 20.3 -3.2
Alamance, NC 2.65 2.71 0.06 18.2 17.3 -0.9 26.6 23.0 -3.6
Clark, WA 2.55 2.62 0.06 15.2 17.0 1.9 29.9 27.7 -2.2
Essex, MA 2.68 2.73 0.05 10.0 17.0 7.0 21.2 22.2 1.0
St Johns, FL 2.44 2.48 0.04 13.5 13.0 -0.5 34.8 32.3 -2.5
Mesa, CO 2.62 2.66 0.04 16.0 19.6 3.6 26.9 26.7 -0.3
Riverside, CA 2.53 2.57 0.04 11.1 13.2 2.1 29.1 28.1 -1.0
Butler, OH 2.32 2.34 0.02 10.9 10.7 -0.2 39.7 38.5 -1.2
Spokane, WA 2.67 2.69 0.02 19.8 17.6 -2.2 26.6 24.5 -2.2
Charlotte, FL 3.00 3.02 0.02 16.2 19.4 3.2 8.2 8.8 0.6
Los Angeles, CA 2.68 2.69 0.01 19.0 19.3 0.3 25.5 25.0 -0.5
St Lucie, FL 3.01 3.02 0.01 19.5 25.4 5.9 9.1 11.7 2.7
Bristol, MA 2.60 2.60 0.00 10.5 9.1 -1.4 25.4 24.5 -0.9
King, WA 2.84 2.81 -0.03 17.3 23.1 5.7 16.6 20.8 4.2
Cameron, TX 2.95 2.92 -0.03 26.6 19.9 -6.6 15.7 13.8 -1.9
Kings, NY 3.51 3.48 -0.03 53.6 51.7 -1.9 1.1 1.7 0.6
Lee, FL 3.00 2.96 -0.04 21.1 24.3 3.2 10.7 14.3 3.6
Monroe, NY 2.56 2.52 -0.04 13.6 10.1 -3.5 28.8 29.2 0.4
Marion, FL 2.95 2.89 -0.06 20.7 19.2 -1.5 13.0 15.1 2.1
York, PA 2.75 2.68 -0.07 11.7 21.1 9.4 18.2 26.4 8.2
Plymouth, MA 2.80 2.73 -0.08 9.1 8.0 -1.1 14.4 17.7 3.4
Summit, OH 2.55 2.45 -0.10 13.9 11.9 -2.0 29.4 33.3 3.9
Indian River, FL 3.15 2.97 -0.18 30.4 16.9 -13.6 7.5 9.9 2.4
Manatee, FL 2.90 2.70 -0.20 21.6 15.8 -5.8 15.8 22.9 7.1

Table S2: Rankings of counties with parcel data by recent changes.
Counties are ordered by the change in nodal degree of new development in
1993–1997 (when sprawl was at its peak) compared to 2007–12 (the most recent
five-year period in our parcel-based series). Many of the counties at the top
of the list, including five of the top six, have been the site of new regulations
or plans to promote connected streets, at least in part of the county. Source:
counties with parcel data, restricted to those with at least 100,000 population
and at least 100 new nodes in each time period. An unweighted mean over
individual years is used to construct the aggregated five-year periods.
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Figure S8: Uniformity of shifts in sprawl. Nonparametric estimates of the
fraction of deadends (upper) and fraction of degree-four nodes (middle) and
mean degree (lower, also in main text) as a function of (A) their distance from
city center, (B) the mean nodal degree within 1 km, and (C) the local population
density. Over time the relationships shift roughly uniformly and then reverse
uniformly. Shaded bands show 95% confidence intervals.

17



S5 Online maps and video

Mean nodal degree of the entire road stock in 2013, and mean nodal degree
of additions to the road stock since 1999, are plotted with census blockgroup
resolution for a number of metropolitan areas, on an online supplementary data
site, http://sprawl.ihsp.mcgill.ca/PNAS2015/bgmaps/.

Video animations of the street-by-street development of selected counties in
our parcel dataset are available at http://sprawl.ihsp.mcgill.ca/PNAS2015.

S6 Robustness tests

Our core contribution rests on the proper identification of the construction date
of each road intersection. To assess the robustness of our dating algorithm for
our parcel-derived dataset, we consider a number of variations on our procedure
for determining the date of nodes.

In general, we follow a two-step process. First, we assign a year to each
edge, based on the year of the oldest building on that edge. Using the oldest
building allows us to ignore the effects of recent development and rebuilding.
Second, we assign a year to each node, based on the year of the most recent
connected edge. This is because the connectivity of a node is determined by
the most recent edge. For example, when a newly constructed street creates a
3-degree node by terminating at an existing road, the node did not exist prior
to the construction of the most recent edge.

Possible concerns with this method are:

Measurement error: Year built information in the parcel data could be im-
perfect. Because we use extrema, single miscoded dates in the data we
receive from counties would determine the year recorded for an edge.
We carry out sensitivity tests for the this problem by considering different
points in the distribution of parcels’ “year built” on each edge. Below we
show values using the 2nd oldest, rather than the oldest, parcel on each
edge. Similar results are obtained when using the 5th percentile.

Low parcel numbers: When edges are treated equally in determining node
dates, small numbers of parcels on one edge can also cause a bias because
the chance of them all being more recently rebuilt houses is higher.
We treat this issue by calculating a set of dates using only edges with five
or more parcels on them.

In-fill and rebuilding: When most homes are of more recent vintage than the
original road network, a reliance on parcel data becomes problematic.
We test against this third issue through our development of a time series
using only TIGER vintage information. This TIGER (stock) series cor-
roborates our main findings using the more detailed parcel-derived time
series (see Figure 1 in the main text). Another rather strong test for the
importance of redeveloped areas which did not affect the preexisting road
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structure is to consider the oldest year built among all parcels on edges
connected to a node.

Figure S9 presents national average time series for three alternative methods
for calculating node age, incorporating the robustness tests described above.
Also included is our baseline estimate, “Most recent”, which is used in the main
analyses and is shown here in black. Years calculated by the “Most recent
(2nd oldest parcel)” method address the “measurement error” and “low parcel
number” concerns: we drop all edges with fewer than 5 parcels, and we select
the second oldest parcel on each edge to determine the date for the edge. As
with our baseline method, the most recent edge is then used to characterize the
construction date of the intersection.

The “Oldest” year calculation dates each node by the oldest parcel among all
adjoining edges, which addresses the “infill and rebuilding” concern. However,
this method is still subject to the other concerns, and also raises the extra
problem that intersections created on existing roads (as in the example above)
will not be dated correctly. Moreover, recent years may be biased towards
deadends. For example, in 2012, the only degree-four nodes will be those where
the range across edges is zero, i.e. both the oldest and most recent edge have a
year of 2012.

Finally, the “3rd oldest” variant is a compromise between the latter two.
It uses the date of the third oldest edge when there are at least three edges,
which amounts to the same as our baseline estimate for degree-one (deadend)
and degree-three intersections, but also provides a sensitivity check for the “infill
and rebuilding” concern.

Figure S9 shows that all variants of our algorithm indicate a flattening out
of road network sprawl in the mid/late 1990s. Moreover, there is strong con-
sistency about the turnaround in recent years, with the exception of the last
few years in our “Oldest” variant. The “3rd oldest” variant, which incorporates
an extra robustness restriction, agrees closely with our baseline values. Our
other qualitative observations appear also to be robust. Because deadends have
only one edge, they are dated the same using the “Most recent” and “Oldest”
methods. Thus, the difference in the fraction of deadends, shown in the lower
right panel, reflects the difference in the denominator, driven by the number of
degree-three and degree-four nodes assigned to each year.

A further robustness test involves restricting the streets considered in our
analysis to those that have street names in the US Census Bureau TIGER/Line
files. This can help to eliminate service roads, freeway ramps, driveways and
similar streets from the dataset. Eliminating unnamed streets increases mean
nodal degree by <0.05, and does not change any of the qualitative conclusions.
The date of the turnaround in sprawl is unchanged.
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Figure S9: Alternate methods to estimate the date of each node. We
assume that each edge was constructed at the time of the earliest parcel (build-
ing) on that edge, except as specified below. To estimate the year in which a
node was built, we compare four methods. “Most recent” is our preferred mea-
sure, and is used in our analyses; the year of the most recent edge gives the
year of the node. “3rd oldest” is the same as “most recent” for deadends and
degree-3 nodes, but uses the year of the third oldest edge for degree 4+ nodes.
“Oldest” uses the earliest year among the set of connected edges. “Most recent
(2nd oldest parcel)” (*) is similar to “most recent,” but the year of each edge
is given by the second oldest rather than the oldest parcel. This last method
only considers edges where Nparcels ≥ 5 , i.e. edges with at least five parcels
with year-built information. See the text for an interpretation of the alternate
methods.
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S7 Further acknowledgements

We relied heavily on open source software tools and would like to acknowledge
Matplotlib [15], Pandas [16], and Git (http://git-scm.com/). We are grateful
to the following counties who kindly licensed free or discounted parcel data to us
for research purposes: Anoka, MN; Athens, OH; Baker, FL; Bay, FL; Belmont,
OH; Butler, OH; Carver, MN; Clark, WA; Clearwater, ID; Cowlitz, WA; Cum-
berland, NC; Dakota, MN; Defiance, OH; Delaware, OH; Denton, TX; Elmore,
ID; Gaston, NC; Grant, WA; Hancock, MS; Haywood, NC; Hennepin, MN;
Hillsborough, FL; King, WA; Kitsap, WA; Lake, IL; Lawrence, OH; Los Ange-
les, CA; Mason, WA; Milwaukee, WI; Monroe, NY; Moore, NC; Ottawa, OH;
Pierce, WA; Pinellas, FL; Burke, NC; Ramsey, MN; Riverside, CA; Saratoga,
NY; Scott, MN; Skamania, WA; Snohamish, WA; Spokane, WA; Spotsylvania,
VA; St Louis, MO; Summit, OH; Tarrant, TX; Thurston, WA; Vanderburgh,
IN; Walla Walla, WA; Warren, NY; Washington, MN; Wichita, TX; Wood, OH;
Bronx, NY; Kings, NY; New York, NY; Queens, NY; Richmond, NY.
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